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1-1. Introduction

There has been cotasiderable interest in the generation of an artificial

ionospheric mirror (AIM) by high power microwaves 1"3. Using an AIM in

the upper atmospheric region as a reflector of radio signals for over-the-

horizon (OTH) communications 4 or radar purposes 5 has several advantages

over the conventional approach of using the ionosphere as a reflector. 1. The
e-

AIM can be produced at a much lower altitude and yet cover a large range by

tiffing the mirror, 2. it is able to reflect radio signals of much higher frequency

through the ionosphere and, 3. its stability and location are controllable.

Moreover, as shown in Fig.l-1 AIM can be used to cover the skip zone,

which is required to avoid clutter in the radar return of the OTH radar.

The study of the AIM involves both intense ground-transmitted

microwave pulse propagation and air-breakdown phenomenon for creating

localized patches of ionization (AIM) in the stratospheric/ mesospheric

altitude range. When air-breakdown is produced by an intense microwave, a

variety of physical processes can result. Among these the most significant is

the ionization process. This occurs when the existing free electrons gain an

kinetic energy of greater than 12 eV. Moreover, when free electrons are

created more rapidly than their loss due to attachment, recombination and

diffusion, their density quickly builds up through the process of cascading
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breakdown in the background gas. These electrons then absorb and/or reflect

the energy of the microwave pulses, leading to serious attenuation of pulse

energy (so called "tail erosion") 6-11. Consequently, the eroded pulse may not

be able to produce desirable ionization in the altitude region interesting to

AIM applications. In the present work the propagation of intense microwave

pulses through the atmosphere is studied numerically via a theoretical model

which has been validated by the chamber experiment.

The study is concerned with two interrelated fundamental issues; one

involves the propagation characteristics of the microwave pulse in the self-

induced space-time dependent plasma. The second is related to the

determination of the optimum pulse parameters for maximum energy transfer

through the background gas. Therefore, a wide range of pulse parameters

including intensity, frequency, width, and shape, etc. are considered in the

numerical simulation study in relation to the above issues.

The theoretical model of pulse propagation used in the present work is

an extension of the previous one 12 which was developed for describing the

chamber experiment ll. This extension is necessary because using the

previous model to the problem of intense microwave pulse propagation

through atmosphere will require a tremendous computer memory and nmning

time. The new model employs a transformation to the local time frame of

reference to convert the original modal equations of partial differential

equation (PDE) form into a new set of modal equations of ordinary

differential equation (ODE) form. The new set of equations can be solved

directly by the available subroutine of an ODE solver 13, reducing the

computation time considerably.

The previous model is also incomplete as the ionization loss is

neglected and the possible focusing effect is not included. Though the
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shortcoming of that model did not affect the outcome of the comparison with

the chamber experiments, their effect on pulse propagation in the atmosphere

can be important. Thus, in the present work the previous model is further

improved by properly including the ionization loss and the focusing effect.

The new code is then employed to perform a parametlized study of pulse

propagation in the atmosphere.

Presented in secti'on 1-2 is the theoretical model and the set of

governing equations for the intense microwave pulse propagation in the air.

The results of numerical simulations are presented in section 1-3. A summary

of the work and potential applications are given in section 1-4.
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1-2. Theoretical Model

The propagation of an intense electromagnetic pulse through

atmosphere is considered. The plasma along the path of the pulse is self-

generated and causes the erosion of the pulse. The microwave-generated

plasma is described by the electron density rate equation

i

8
--n=( v_- v,)n- _ (1-1)
c_

and the electron momentum equation

8n_=-ne_- (r/v, + v, + _n+ v)rn, nV (1-2)

where vi, Va, _(, and v are the ionization frequency, attachment frequency,

recombination coefficient, and electron-neutral particle collision frequency

respectively. The ionization energy is represented by ei, and rl=(2ei/3Te) _a is

a measure of the effective momentum loss of the plasma fluid in each

ionization process. Since the time scale considered is much shorter than the

diffusion time, the diffusion term in (1-1) and the convective term in (1-2) are

neglected.

With the aid of(l-l), Eq. (1-2) reduces to

,9
--z-'_ =-eE / m, - [(r/+ 1)v_ + v]_ (1-3)
a2
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The wave equation derived from the Maxwelrs equations is given by

8 5 _5 8 5 co_)_(z,t) _ m
(c? 5 c -_ + = - v;co( . / e)_(z,t) (1-4)

where the relation J=-enr¢ has been used, v_ = r/v_ + K + yn+ v, and

a_r, = (4nne 5 /m,) 1_5is the electron plasma frequency.

Equations (1-1), (1'-3), and (1-4)provide a self-consistent description

of pulse propagation in an ionizing background. They are coupled through

the ionization frequency vi, which is modeled to be 14

vl : 3.83 x 102 v(oP '2 + 3.94 eJ/2)exp(-7.546 / tr) (1-5)

D

where E = [A / A_hI is the wave field normalized to the breakdown (ionization)

threshold field, Ath. The expression E(z,t)=A(z,t)ei_z't_+ c.c. for wave

field is assumed, where c.c. representing the complex conjugate. For a cw

wave, Ath _ 18p(1 + o95/ v_) _5 V/cm where p is the background pressure

measured in Torr and co is the angular frequency of the wave.

If the pulse is not too short, i.e. it contains many oscillations, slow time

and spatial varying envelope approximations can be used to analyze (1-3) and

(1-4). This is done by first setting v(z,t) = V(z,t)e "i#(z't)+ c.c. and

E(z,t) = [A'(z,t)/(1-z/L)]e "_z't) + c.c., where A' and t_, are real functions

and A'/(1-z/L)=A, L is the focal length of the pulse, L---_ oo for an

unfocused pulse beam. V(z,t) is, in general, a complex function and the

variation of the amplitude function A'(z,t) and Iv(z,t)l in space and time is

much slower than that of the phase function _(z,t). These expressions for

v(z,t) and E(z,t) are then substituted into (1-3) and (1-4). Using the relations
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IainA' / '_l<<la¢/ '_1,I g'i <<la¢/ o_1,and v / as
employing the forward-scattering approximation giving the definitions of local

frequency co= d_/d', and local wave number k =-d_/dz, (1-3) and (1-4)

are simplified considerably. Next, Eq (1-3) is solved to yield

V(z,t) _-ieA(z,t)/mc(o9+iv2), where ½=(r/+ 1)v_+ v. This result is used

to reduce (1-4) into a Poynting equation

,-7

_-Pct + _ vSP ='tiP + 2vsP / (L- z) (1-6)

where P=AV2r¢ is the energy density of the pulse, v. = 0o9/czk is the group

velocity, and fl= v_ogr,2 / (o92 + v22).

The focusing model is based on the continuity of the power flux.

Diffraction is neglected in modeling the focusing effect of the microwave

beam. This model can be easily generalized to include a finite focusing spot

size by replacing (1-z/L) by [(1- z/L)2 + A2]_'2, where A is the ratio of the

cross section area of the beam at the focal height z=L to the emitting area of

the antenna. The simpler model is chosen as the two models give negligibly

different results in the region below the focal layer.

The other equation deduced from (1-4) is the real part of the local

dispersion relation of the pulse, given by

aft = k2c 2 + o9,,2[1- v,v 2 / (a_ + v22)] (1-7)

which is used to determine the local group velocity v, = do9/czk of the pulse.
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In the following analysis, (1-1) and (1-6) are the set of modal equations

giving a self-consistent description of pulse propagation in a self-generated

plasma. Their coupling is through the ionization frequency given by equation

(1-5), which is reexpressed in terms of P = P / P as

v_/p = 2.5 x 10718.8P TM + 2.236P3/4]exp[-7.546 / p]/_ ](sec.Torr)-_
*

(1-8)

where P= =EJ/8n'=A_ _/2n" and E= =2Ath = 36.84p(I +off / v_) _/_ V/cm

is the breakdown threshold field of the background air of pressure p.

When considering the practical application of pulse propagation over a

long distance, the required computation time becomes an important issue.

The computation time in solving the pair of coupled equations (I-I) and (I-6)

is long because the form of (I-6) which contains both spatial and temporal

derivative terms. Hence, a transformation to the local time flame of reference

is introduced to separate the spatial and temporal derivative from the same

equation ]5. In doing so, the computation time for the same propagation

distance can be reduced tremendously.

The frame transformation is defined to be 12

= '+ z ,, ILI,Z )t t SodZ IV'" ""

and

Z=Z )

where t' is the local time of the pulse and Vg(t',z')=Vg(t,z).
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Thus (1-6) and (1 -1) become

c3 V,P, (1- z' / L)' = -[v_ + c2v.B / 2 V,2](1- z' / L): P,N / no
c3z'

and

,3__z_N = v BN(V, oP,° / V,P,)(1 - z' / L)" exp[-v, f[ dz"(N / no) / V,]
&,

(1-9)

(1-10)

where P,(t',z')= P(t,z),

z'= 0), P_ - P_/ P_, and

N(t',z') = n(t,z), V,o = V "" '-0),s[t ,Z- Plo = Pl(t ' ,

n I/4
B=v i / vo-l=3.83x 102(_3/4 + 3.941:', )exp(-7.546/_v2)-I (1-11)

In the above equations, v, vi, v a, Per, and n¢ are all altitude dependent,

and their functional forms are determined as follows. Assuming that the air

pressure at 50 Km height is 1 Torr, and the pressure decays exponentially

with the altitude z', the pressure is given by p(z')= 760e '346xz°_z' Torr, where

z' is measured m meters, and v= Voe_346x_°_z',where vo = v(z'= 0). In terms

of the ground level de breakdown threshold power P¢o= P_ (z'= 0,co = 0), then

Par(z') = Pco( 7"/+ e'2692_l°qz'), where r/= (05 / Vo2.

e2692xl°qg'), where nco=mVo2/47/e 2. At 1

1.457 x 105sec -_ and v= v = 6 x 109sec -_ for 1

Similarly, nc(z')=noo (r/+

Torr pressure, v, = v,_ =

eV electron temperature 2.

Including the effect of electron heating by the microwave pulse and assuming

that the unperturbed background temperature is about 0.03 eV, a modal

function for v is given by v= v_p[_ '': +0.03] ''5, where _=Pt/P_ =
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(P_/P,_)(r/+e'2692x'°"") -_. We now introduce the dimensionless variables

and functions: ( K v-) 1'2t'--+ t, ( K v_) ''2z'/c -+ z, ( v¢v,,)U2L / c--+ L,

_=N/no=(N/noo)h(z)--->n, where h(z)=(rt+ ea_X'°") -' P,--+P,

_o = P_/ P,o --_ P_o, Q=(1-n)--'":_r,o(1 - z'/L) 2 --_(1 - n)"_Plo(1 - z/L) _,

P_o= Q / (1- n)V2(1 - z / L) 2, and P, = P,oh(z) =[Q / (1- n)":(1- z/L)2]h(z).

In terms of these dimensionless variables and functions, we have the
0

. xl12

numerical values ( v / v) ''2 = 203 and ( K v.) = 2.957 x 107sec -', and Eqs.

(1-9)-(1-11) become

ran= 3.745g(z)Bn(Q o / Q)exp[-1.54 x 105 f(x)dx]
Ot

(1-12)

0

_Q = -3.745g(z){(203)2[(P_oh) _'2+0.03] _'2+ B/2(1- n)}nQ / ,_/i- n (1-13)

and

B = 3.83 x 102 {(P_oh)_" + 3.94(P_oh)'"} exp[-7.546 / ,,2(P, oh) 1-1 (1-14)

where g(z)= e"3_'°_,f(x)= g(x) {[Plo(x)h(x)l 'a + 0.03}V2[n(x) / _/1- n(x)

],and Qo = Q(t,z=0).

Equations (1-12) and (1-13) describe vertical propagation of

microwave pulse through the atmosphere either from ground to space or from

space to ground. If the pulse propagates obliquely with an angle 0 with

respect to the vertical axis, (1-12) and (1-13) must be corrected by replacing

Vg with Vgcos0, i.e., replacing _- n by _/]- n cos 0 in these two equations.
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In terms of z and t, the real distance x and time x are given by x=l O.l z (m)

and z=33.82t (nsec).
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1-3. Numerical Simulation Results

The dependencies of the propagation characteristics of an unfoeused

rectangular pulse (i.e. L _ oo) on its power, width and carrier frequency are

first investigated by integrating the modal equations numerically. The pulse is

assumed to propagate vertically upwards from the ground. When the pulse

reaches the region where 'the breakdown threshold is exceeded by the pulse

power, plasma is generated and causes erosion of the tail part of the pulse.

This tail erosion phenomenon at four different altitude locations (46.04,

50.75, 52.78 and 56.84 km) is demonstrated in Fig.l-2(a). At the height of

46.04 km the breakdown threshold is only slightly exceeded, producing very

little plasma in the region below this height. Consequently the pulse is almost

unperturbed. At the three higher locations, the pulse has interacted with

increasingly more plasma, and its tail erosion increases accordingly as shown.

The corresponding electron densities at the four locations are presented

in Fig.l-2(b). The graph shows the electron density at 46.04 km grows

slowly to a very low saturation value. However, at a higher altitude, e.g.

50.75 km, the breakdown threshold becomes lower. A stronger breakdown

leads to a faster build-up of electron density to a much higher saturation level

of about 8 x 1lY cm -3. The saturation of the electron density is due to the tail

erosion effect. A further increase of the altitudes, e.g., at 52.78 and 56.84

kin, the breakdown threshold is reduced, but the powers (widths) of the pulse

at these two locations drops even faster due to the tail erosion process.

Therefore, the electron densities at those two locations grow more quickly,

but saturate at lower levels.

The distribution of the maximum (in time) electron density along the

trail of the pulse is presented in Fig. 1-2(c). This graph shows that significant
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Fig.l-2 Propagation of an unfocused 5.41asec pulse having 1GHz carder

#equency and an initial power intensity P=9x 106p¢o

(a) Tail erosion of pulse propagating to four altitudes: 1.46.24, 2.

50.75, 3.52.78, and 4.56.84 km.
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ionization occurs only in a very small spatial region attributed to tail erosion

effect. These results suggest that the propagation characteristics of a high

power microwave pulse be closely related to the electron density along its

propagation path. Presented in Fig.l-3(a) are the electron density

distributions along the path of the pulses for four different incident power

levels: 7 x 104, 9 x 10"_, 5 x 10-_ and 10 4 of the ground level breakdown
I

threshold power. As shown, an increase of pulse power enhances the level of

the peak electron density but also lowers the region of cascading breakdown.

In other words, the pulse is eroded earlier and more severely as its power

level is increased. The power levels of the four pulses in Fig. 1-3(a) at their

maximum electron density locations are evaluated respectively to be 2.608,

2.504, 2.286 and 1.553 of the corresponding local breakdown threshold

power.

One possible way to reduce tail erosion of a high power pulse is to

increase the carrier frequency and width of the pulse together. The classical

breakdown threshold curves for optimized pulse widths indicate that the

breakdown threshold field increases with the carrier frequency co in the

dependence of (1 + cos / v2) 1/_and has a minimum at o) = v. The appearance

of this minimum is due to the transit time effect of short pulse width (i.e.

Paschen effect). If the pulse is long enough, the breakdown threshold curves

tend to become fiat at higher altitude and the minimum disappears. Using a

long pulse width of 5.4 Nee and fixing the incident power level of 9 x 10-_ of

the breakdown threshold power, but increasing the carrier frequency of the

pulse from 0.5 GHz to 1.5 GHz, as demonstrated in Fig.l-3(b) the breakdown

location of the pulse moves upwards (instead of downwards) and ionization

decreases. However, this approach may not be feasible because the required

frequency increase is proportional to the field intensity of the pulse.
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Fig. 1-3 Spatial distribution of electron density (cm "3)

(a) The maximum (in time) electron density (cm "3) distribution

generated by a pulse (5.4_s and 1GHz) for four incident powers
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The dependence of the ionization characteristics on pulse width is also

examined. The presented in Fig.l-3(c) demonstrate that the location of

cascading breakdown is not sensitive to the pulse width. In other words, the

Paschen effect disappears as the pulse width is wide enough. However, the

longer the pulse is the higher the peak level of the electron density, and the

thicker the ionization layer. The numerical results also indicate that the shape

of the pulse is not an inlportant factor in determining the electron density

distribution and the location of cascading breakdown. This is because a

change of the pulse shape has the same effect as changing the pulse width.

An empirical relationship between the pulse width and pulse power for

a fixed percentage of energy transfer from ground to a given altitude is

determined. As shown in Fig. 1-4, three constant percentages of pulse energy

(60%, 68%, 90%) transmitted to a desired altitude (e.g. 50 km) depend all

approximately on the product of the cubic power of the normalized initial

pulse power (p3) and the pulse width (W), i.e. p3W=constant which is

proportional to the percentage of pulse energy transferred from the source to a

destined location. This shows that the percentage of energy transferred is a

more sensitive to pulse power than the pulse width. Thus, without further

treatment of the pulse, such as introducing a focusing phase, the maximum

electron density produced by a single pulse at the altitude of interest (e.g. 50

kin) is found to be limited by the tail erosion effect to about 10_ cm "3.

We examine three different approaches in the following to determine if

the ionization at the destined location can be improved. One uses a repetitive

pulse approach, the second a focused pulse beam approach, and the third two

intersecting beams. Using periodic pulses with 5.41as pulse width and a 50%

duty cycle, the induced electron density distribution is presented in Fig.l-5,

where only the electron densities resulting from the first three pulses are
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) 8.0

Fig. 1-5 Electron density (cm "3) distribution generated by repetitive pulses

with a 50% duty cycle; up to three pulses are demonstrated.

Frequency, width and normalized initial power of each pulse are

1GHz, 5.41as and 9x 10 .6, respectively.
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included, as the electron density distribution remains about the same after the

third pulse. The results indicate that repetitive pulses can indeed increase

electron density at the desired location, but it still saturates at a relatively low

value due to the tail erosion effect.

If we assume for the second case that the focusing effect is limited to a

power amplification factor of 10 at 50 km height (i.e. having L > 73 km) for

practical reasons, the result presented in Fig. 1-6 shows that the maximum

electron density at the given location (50 km height) can only be increased by

less than an order of magnitude (comparing with case 3 of Fig. 1-6 and Fig. 1-

3(c)). The peak level is, again limited by the tail erosion effect and can not be

enhanced significantly by the increase of the pulse width, as its main effect is

to increase the spatial width of the ionization layer. Again, this density level

is too low for the considered applications. It is noted that the electron density

can be increased to the cutoff density level if the focusing effect is increased

by another two orders of magnitude. However, this would be impractical as it

requires a very large antenna array, and also the ionization region becomes

too small to be a reflector.

We, therefore, explore a third alternative approach using two

intersecting pulse beams 1,3 shown in Fig.l-7. Since the modal equations are

not valid in the intersection region of the two beams (amplitude and phase

variation in space become comparable), we evaluate only the intensities of the

pulses up to the lower boundary of the intersection regions and add the field

amplitudes at that intersecting point to determine the electron density. As

shown in Fig. 1-8, when the two pulses intersect at about 50.2 km, the electron

density increases quickly to about 6.6 x 108 cm-3. This density level is

considered to be high enough for practical applications.
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Fig. 1-7 Two crossed microwave beams scheme.
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Fig. 1-8 Electron density (cm 3) distribution generated by two intersecting

pulses at 50 km height. Each pulse has the same parameters as

those of Fig. 1-5.
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1-4. Summary and Conclusion

We have investigated numerically the extent of the electron density at a

distant altitude location which can be generated by a high power ground

transmitted microwave pulse. This is done by varying the power, width,

shape and canier frequency of the pulse. The results show that once the

breakdown tbxeshold field is exceeded in the region below the desirable

altitude location, electron density starts to build up in that region through

cascading breakdown. The generated plasma attenuates the pulse energy (tail

erosion) and, thus, deteriorates the energy transmission to the destined

altitude. The electron density saturates at a level limited by the pulse width

and the tail erosion process. As the pulse continues to travel upward, though

the breakdown threshold field of the background air decreases, but the pulse

energy (width) is reduced more severely by the tail erosion process. Thus, the

electron density grows more quickly at the higher altitude, but saturates at a

lower level. Consequently, the maximum electron density produced by a

single pulse at 50 km altitude, for instance, is found by the present study to be

limited to a value below 106 cm -3.

A repetitive pulse approach is then considered. The result indicates

that using a sequence of pulses can only slightly increase the electron density

at the desirable location. Again, this limitation is caused by the tail erosion

process. This leads to the conclusion that air breakdown in the region below

the desirable altitude must be avoided so that sufficient pulse energy can be

delivered to the desirable region for plasma generation. This can be done by

the following two approaches. One uses a focused beam so that only near the

given altitude does the field amplitude exceed the local breakdown threshold

field. However, this approach requires that the beam focusing rate be much



) 30

greater than the decreasing rate of the breakdown threshold field with the

altitude. Thus, it requires a very large antenna array that may not be practical.

Moreover, to keep the area of the ionization layer at a practical size one has

to limit the focusing effect to, for instance, a power amplification factor of 10

at the desirable altitude. In this case, the ionization is found to be enhanced

only by less than an order of magnitude from the unfocused beam case.

The other scheme 'uses two beams (pulses) intersecting at a given

altitude 1,3. Each beam has a field amplitude below the breakdown threshold

of the gas at that altitude. However, the fields in the intersecting region can

interfere constructively and exceed the breakdown threshold. This approach

is most effective when the two beams are coherent and have the same

polarization. In this case, the intersecting wave fields form a standing wave

pattern in the direction perpendicular to the bisecting line of the angle

between the two beams. Thus parallel plasma layers (instead of a single

layer) with a separation d = 2o/2sin(_/2) Can be generated, where _ is the

wavelength of the two beams 3. Using this approach, it is shown that the

electron density at the desired altitude (e.g. 50 kin) can be increased to about

6.6×108 cm -3, which is considered to be high enough for AIM applications.

Since a reflector produced by this approach is a set of parallel layers, it can

effectively scatter signals even having their frequencies higher than the

plasma cutoff frequency as long as the Bragg scattering condition can be

approximately matched 3. Another advantage of this approach is that the

location and the tilted angle of the reflector can be controlled easily by

adjusting the incident angles of the two pulse beams.
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